If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19x^2+5=180
We move all terms to the left:
19x^2+5-(180)=0
We add all the numbers together, and all the variables
19x^2-175=0
a = 19; b = 0; c = -175;
Δ = b2-4ac
Δ = 02-4·19·(-175)
Δ = 13300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13300}=\sqrt{100*133}=\sqrt{100}*\sqrt{133}=10\sqrt{133}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{133}}{2*19}=\frac{0-10\sqrt{133}}{38} =-\frac{10\sqrt{133}}{38} =-\frac{5\sqrt{133}}{19} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{133}}{2*19}=\frac{0+10\sqrt{133}}{38} =\frac{10\sqrt{133}}{38} =\frac{5\sqrt{133}}{19} $
| 2.5-0.03x=-1.49 | | 12x+5x−13x−1=7 | | X/9-1=x-10 | | 8r+-11r=3 | | y+41=894 | | 2x2+6=24 | | 2x/15+10=20 | | -6-5(-7x-8)=-1 | | n/4-7=-3 | | (3x-34)=(2x+21) | | ×-62,500=0.25y | | -22k=-396 | | 14+3x=56-2x | | -555=g+-155 | | 9.4281x10^9=x | | 2÷5y-5÷8y=5÷12 | | 5(y-7)+7y=-23 | | -3(2x+6)=-10 | | 7u=980 | | 2x+4=+1 | | y-(7)=-4 | | 9+7v=-9+v | | u−342=107 | | 4(-2x-4)+3x-2=1 | | 4x-1/3=2x-3 | | 3=a-(12) | | -8x²+17x+20=0 | | 4(-2-4)+3x-2=1 | | X^2-6x+62=-6 | | -r=-10+4r | | z+510=73 | | -9x-3+6x=-10x+9 |